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1. PHM at GE Global Research
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PHM: Comgrehensive Foundation
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PHM: From RM&D to Prognostics & Optimization

GE RM&D/PHM Installed Base
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~17,500 aircraft engines ~60,000 medical imaging machines
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PHM Technologies
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2. Issues in Model Lifecycle

- Handcrafting Models
- Lifecycle: Build, Use, Update & Maintain




Model Generation Process: Pictorial

' {Assumptions |

Limitations}
““““““““““ ' SC Tools
KBS Development
& Deployment
Problem Formulation, SC Model or
Performance Specific. “Application”

KBS Design
KBS Functional Validation
KBS Compilation/Deployment
KBS Performance Validation

| Context, Data, Knowledge,
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What is Wrong with this Picture?

' {Assumptions |

Limitations}
““““““““““ ' SC Tools
KBS Development
& Deployment
Problem Formulation, SC Model or
Performance Specific. “Application”

KBS Design
KBS Functional Validation
KBS Compilation/Deployment
KBS Performance Validation

| Context, Data, Knowledge,

Experiments]

@ imagination at work Piero jssone © All rights Reserved - CIDU 2008



Let's Analyze the Problem

|
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What Will Happen Over Time?

New Dataq, New Tests
Updated Domain Knowledge
Physical Process Business Process
Environmental Changes Market Changes
Process Upgrades Policy Changes
SC Tools Sensor Changes Inform. Supplier Changes
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Context, __y Data Scrubbing _ Data Scrubbing
' Data i & Preprocessing & Preprocessing

A A

j_, Knowledge | _,)

' Knowledge |-t-»| Knowledge |_,
| Represent.

................ - Represent.

Structure

|
|
|
Parameters ;
|
|
|

Reasoning Mech.

t Design Search

t Design Search

T v
[ Experiments t=1t,
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Addressing the Lifecycle of a KBS
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Addressing the Lifecycle of a KBS (cont.)

Example: Supervised Learning
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3. Computational Intelligence and Model
Generation

- Representation, Reasoning, and Search
- Functional Approximation (ANFIS) vs Fuzzy Instance Based

Model (F-1BM)
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Representation, Reasoning & Design Search
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Functional Approximation vs. Instance-Based

Cross Product Space Xxy Y T | Functional Approximation | State Space X A X, b
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Functional Approximation vs. Instance-Based

Cross Product Space X x¥ Y T | Functional Approximation | State Space X A X, b,
10 f-—oo—- -
VA :
08 AN Local Models A
~ 06 a &y POy
Yo 08 @ Probe U= [)?0, )A’o] 04 (H & Aggregation

0.2

1

|

1
0.0

|

1

1

- = . " h S et 2 . "'._-_ : 4I/C1
/ 1 e '~ - 1\‘ /’/i ) X,
’ 0s 1 i
Moo X e <
X, X, .
Neural Fuzzy Al Statistics
Networks Systems /

Radial Basis Feed-forward Takagi Sugeno Mamdani-type

Functions

@ imagination at work

7\

Networks Systems

N/

Neural Fuzzy
Systems (ANFIS)

Systems

Rea?ning ML

(Continuous) Kernel-Based
Models

CBR
N\ e
Fuzzy Instance

Based Models (F-IBM)

Lazy Learning

Piero P. Bonissone © All rights Reserved - CIDU 2008




ANFIS Network

Inputs IF-part | |Rules + Norm | | THEN-part Output
»@\ '@\
~
&< !
O~
—>
b Sl
Input 2 | GK /
~ ’@/
Layers: | O 1 P 3 4 5
Lo: Inputs layer nodes: State variables
L,: Values layer nodes: State variable Termsets, computing the membership value of inputs
L,: Rules layer nodes: Fuzzy Rules, using product to compute rule matching factor wi
Ls: Normalization layer nodes: Each w;is normalized (to add up to one) generating o,

L4 Function layer nodes:  Linear regressions f; are evaluated, generating rule outputs y;
that are weighted by normalized rule matching factors g,
Ls: Output layer node: Sum of weighted outputs - (completing weighted average o1 outputs Vi)
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ANFIS Reasoning: Geometrical Interpretation

Cross-Product Space:X XY

Functional Approximation
defined by ANFIS ruleset




ANFIS Reasoning: Algebraic Interpretation

(a_, b_, E) [Parameters of GBF;]
f
Partial Matcfing
Ny S S,
GBF, (x;;a;,b;,¢;)|—> ﬂizl [Si,j] < — S
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Functional Approximation vs. Instance-Based

Cross Product Space Xxy Y T | Functional Approximation | State Space X A X, b
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Kernel-based Models

Classical Kernel-based Models
We have: .
- a collection of points {u}: ;=X 53y 1=10%55%, joees X, 3 y;1 where j=1,....k
- a Query Q defined in the Xpace Q=[X,:5,1=10x4.%, 4.0 x,,: 7 where |X,[4X |=n
- a Kernel function of the distance between each data point and the query,
and a smoothing parameter h K[d(fgfg)j

Examples of Kernel Functions K Examples of Distances d
(from Atkeson, Moore, Schaal, 1996)

+ Unweighted Euclidean distance:

174 1/d%2 1/ (d+1)
10 10 1 de(x.q) = [3(x;—q;)" = \/(x—q)T(x—q) (24)
s 8 0.8 ]
& 6 0.6
4 4 0.4 ¢ Diagonally weighted Euclidean distance:
z 2 0.2
o " o 7 o 7 f ) 2 pr— : . )
0 2 |" o a |7 o 2 dy(x.q) = \/Z(m,.(xj — ;)" = /(x — q)™™MTM(x — q) = dg(Mx, Mq) (25)
d -- d --» d --= ]
sxpi-d - =pi|-d]) oaitom where m; is the feature scaling factor for the jth dimension and M is a diagonal
1 1 1 matrix with M;; = m;.
0.8 0.8 0.8 :
°.8 0.8 0.8 ¢ Fully weighted Euclidean distance:
0.4 0.4 0.4
2'2 o2 ] o2 dn(x,q) = /(x — a)"™M"M(x — q) = di(Mx, Mq) 6)
o 0 2 0 2
d - d --= where M is no longer diagonal but can be arbitrary. This is also known as tne
1-4 1 - dtzitz 1 - d*31*3 Mahalanobis distance (Ton and Gonzalez, 1974; Weisberg, 1985).
1 1 1 ¢ Unweighted L, norm (Minkowski metric):
.8 0.8 0.8
0.6 0.& o.6 ;
o.4 0.4 0.4 1.(x,q) = X —q” 7
o2 0.2 o2 dplX,q) (?Zl i q-|) 7)
o ] ' flo ' '
o 2 0 2 0 2 . . . . .
d - d --a ¢ Diagonally weighted and fully weighted L, norm: The weighted L, norm is

d,(Mx, Mq).
@ TTOGTOTOTT Ut WOTR Piero P. Bonissone © Al Tights Reserved - CIDU 2008




Kernel-based Models: Nadaraya-Watson Estim.

[Distance [Smoothing [Kernel
da(.,.) Function] h parameter] K() Function]
Partial Ma;tching J ! g v
— J.Q J,Q dX ., X _
d(X ., X ,) >y >K.( A Q]zK.(d. )
_ D) Q J J 7.0
X, ! h h
_ | Distance (Dissimilarity) ~ Smoothed Distance  Weighted Simildrity
X for peer y; (Dissimilarity) for peer u; for peer Uj% K,
: Normalized
Retrieval Local Models K, Weighted
y k_zl KJ. Similarity
10 0(m) TZ
Q! N l i
U, | y
200(u, )" y P
L 2 > Z K . X y 5
j=1""J J Yo
u, Vi
O O(u,) >
L0 0}y I ,
P (Q) Aggregation
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Kernel-based Models: Weighted Regression

Kernel-based Regressions

Data Weighting Process:
- Use the Kernel function (evaluated at each point u) as a weight

- Create a diagonal [k x k] matrix W with diagonal elements W& w; and
zeros elsewhere

- Create a [k x n] matrix X with the original state data. The i row of X
contains the n coordinates of the it point, i.e, X,

- Create a [k x 1] vector Y with the original output data. The it row of Y
contains the value of y,

- Weigh matrix X and vector Y using the weights W:

Z = WX and V=WY Zis[kxnlandVis [k x 1]
- We want to solve the equation:
Q) =X,(z"z)'z"v |
which is predicated on having a non-singular [n x n] matrix: (ZTZ)

. -1 . . . . .
- When the matrix (ZTZ) is singular we can resolve the issue using ridge
regressions
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Kernel-based Models: Weighted Regression

[Distance [Smoothing [Kernel
d (,) Function] h parameter] K() Function]
Partial Ma;tching J ! g v
— = J.Q 0 dX.X -
= ’d(Xj’XQ) ’% >K{%)=Kj(dw)
0 7y
_ | Distance (Dissimilarity) ~ Smoothed Distance  Weighted Simildrity
X for peer y; (Dissimilarity) for peer u; for peer y; K,
Retrigval Local Models l}? il
y 0 ifi#]
iul EO 0(“1) 1’ I yl B ‘)Vi,jz{\/fifizj
Q. |
| L y2 Z=WX and V =WY A
200w, T i ] "o
y 9, =X (27z)'Z'v
ko O, )y I q
A yk
> P (Q) 1 Aggregation
X,
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Functional Approximation vs. Instance-Based

Cross Product Space X x¥ Y | Functional Approximation | State Space X A X, b,
10 fooov -
08 I’C\ Local Models A
y — 06 a &-y [Py
Yo 08 @ Probe U= [Xo’ )A’o] 04 (H ¥ & Aggregation
4. 02 i H
.l A 00 ' L >
| /4/C1
/ ! e e - : 0 X
e - 1 b : . 1
05 e \ L, |
XZ’X —————— — f R]_
X, X1 X,
Neural Fuzzy Al Statistics
Networks Systems /
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4. Fuzzy Instance Based Model (F-1BM)

- Retrieval

- Similarity Evaluation

- Creation of Local Models

- Qutputs Aggregation

- Evolutionary Search for Designing a F-IBM




Fuzzy Instance Based Models (F-IBM's)

Comparison with Case Based Reasoning

e |IBM's rely on a collection of previously experienced data that can be
store in their raw representation

e Unlike Case-based Models (CBM's), IBM's do not need to have data
refined, abstracted and organized as cases

e Like CBM's, IBM's are based on analogical reasoning, as they rely upon
finding previous instances of similar objects (or points) and use them to
create an ensemble of local models

@ imagination at work Piero P. Bonissone © All rights Reserved - CIDU 2008



Fuzzy Instance Based Models (F-IBM's)

Similarity Measure

e The definition of similarity plays a critical role in IBM’s performance

e Similarity will be a dynamic concept and will change over time.

Therefore, it is important to apply learning methodologies to define it
and adapt it.

 Furthermore, the concept of similarity is not crisply defined, creating the
need to allow for some degree of vagueness in its evaluation
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Fuzzy Instance Based Models (F-1BM's)

Solution:

e By using a wrapper approach, we evolve the design of the similarity
function and the design of the attribute space in which the similarity Is

( to be evaluated.



F-IBM Redasoning: Geometrical Interpretation

State Space X

W, X,
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F-IBM Redasoning: Algebraic Interpretation

(a b ) [Parameters of TGBF;] |}y | [Weights for Attribute Space]

Weighted Similarit
£ 4 Y Sj,i 4 Sj Sj
TGBF,(x, j;a,,b;, x, ) |—> ﬂ; [max(1 - wl.),Sj,i] > s
_ Feature i Similarity ~ Weighted Similarity J=1
o for peer u, for peer u; ¢ Normalized
| Similarity
Retrieval Local Models for peer u,
R (O (u))= D, =
ULOoOo®w)p . W i |
Q i AXD,g,+(A-a)D, ),
. R,(0(u,))=D,,,, = Y A
o U, EO > B 2 2 z(z),z_ > Z | |
0(u2) AXD,y, +A-a)D,, ,, J=1 S] X yJ 7Y
l_fl!(__,O O(Ltk) 4 Rk(O(Mk))z Dt(k),ki d
Pl aAXD,y; +A=-a)D, ), Vi
L) B Aggregation
: 7,
o

@ imagination [Constant for Exponential Average of History]




Fuzzy Instance Based Models (F-1BM's)

We address this design issues by evolving the design of a
similarity function in conjunction with the design of the
attribute space in which similarity is evaluated. Specifically we
us the following four steps:

1) Retrieval of similar instances from the Data Base

2) Evaluation of similarity measure between the probe and the
retrieved instances

3) Creation of local models using the most similar instances

4) Outputs Aggregation (weighted by their similarities)

Let us explain the four steps
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(1) Retrieval

. Probe Q
O Peers (Q) =P(Q)
B PQ) =1, j=1 .k lu,e NQ)}
State Space X Xn
A b Neighborhood (Q) = N(Q)
1 .

10 fooo o : N(Q) =Hxi,Q —xi.jH<Ri i=l..,n

0.8 Cj:) % !
i L (g’ |
: 06 !
i I i
L 04 i Iay
il 02 ! h
| | h
| 0.0 L
! R CEPS I
i R2 i ,’// i 7 ’

---------------- 4—p.
Xo % if GBF >107°
" TGBF ,(x;:a,.b,.c,) = {1+ | ~—°¢
a,;
0 otherwise
Representation Feature Space History

Probe Q=[X:0@)1 X, =[t,pox,,]  HistoryofProbe  O(Q)=[D, s Dyig) ]
Peer u,=[X ;0(u;)] Xj:[xl,j""’xn,j] History of Peer O(u;) =D, ;, D, j>.rs Dy, ;]
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(2) Similarity Evaluation

. Probe Q

O Peers (Q) =P(Q)
PQ) =1, j=1,klu, e NO}

State Space X S,,(Q)

Neighborhood (Q) = N(Q)
N(Q) = Hx,.’Q - x,.’jH <R i=l..,n

Q Peery, u;€ P(Q)

1 5~ if GBF >107°
TGBF (x;;a;,b,,c;) =<1+ X;,—¢C;

0 otherwise

S, = Similarity between Probe Q and Peer u,

S, = Min!",\S, ,}= Min!. TGBF (x

a,,b,,x,)

i,j°

S, = Weighted Similarity between Probe Q and Peer u,

S, = Minle{Max [(1 —w,), Si’j]}= Minle{Max [(1 —w,), TGBF.(x,;a.,b,, x.’Q)]}

i
@ imagination at work Piero P. Bonissone © All rights Reserved - CIDU 2008



(3) Creation of Local Models

Local Models

Rather than using a pre-constructed model, as in ANFIS or other functional
approximators, we use local models, as in memory-based approaches, kernel-
based regressions, and lazy-learning.

In this example, each retrieved object u; has an associated time-series:
O(;)=[D,;,D D, ;]

2.0 ).
One of the simplest local models that we can create is the exponential average,
that will “discount” the oldest data, using a forgetting factor a.

The peer u; of the probe will produce an output y, representing the prediction for
the next point in the time-series:

y; =D

()L

=D . .=axD

t(j).J t(J).J

+(1-a)xD [Whereli,j:DLj]

t(j)-Lj
1(j)-i

G (J)
=(1-a)""' D ;+>.(1-a) = xaxD,
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(4) Outputs Aggregation

Outputs Aggregation (weighted by their similarities)

We need to combine the individual predictions {D,,, } (=1.... k) obtained from the
peers u(Q) to generate the next prediction D,,,, , for the probe Q

To this end, we compute the weighted average of the peers’ individual
predictions using their normalized similarity to the probe as a weight:

A ZJISJXDf(J)"‘lJ 2]1 nyj
yQ _ DNextQ
Z] =1 J Z] =1 J
: : : A S,
If we define the normalized weights as: S. ==

211 7= <’ >

then the above expression can be rewritten as:
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(4) Outputs Aggregation (cont.)

Outputs Aggregation (weighted by their similarities)

Z]1 nyj
25

Note that this expression (a convex sum of local models outputs using the
similarities as weights) is similar to the structure of the Nadaraya-Watson [1964]
estimator for non-parametric regressions using locally weighted averages -
where the weights are the values of a kernel function K:

Z;K(x—xj)x y;
XK

From this analogy, we can see a structural similarity between the Similarity
measures S; used by the Instance-based method and the Kernel functions K
evaluated on the distance between the probe and each point, i.e.:

S, =K(x—x;)

A

yQ :DNextQ
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Evolutionary Search
EA to Search in Design Space

The EA is composed of a population of individuals (“chromosomes”),
each of which contains a vector of elements representing distinct
tuneable parameters within the FIM configuration.

The EA used two types of mutation operators (Gaussian and uniform),
and no crossover. Its population (with 100 individuals) was
evolved over 200 generations

Each chromosome defines an instance of the attribute space used by
the associated model by specifying a vector of weights (w,, w,, ...,

wJ.
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Evolutionary Search

EA to Search in Design Space

The EA is composed of a population of individuals (“chromosomes”), each of which
contains a vector of elements representing distinct tuneable parameters
within the FIM configuration.

The EA used two types of mutation operators (Gaussian and uniform), and no
crossover. Its population (with 100 individuals) was evolved over 200
generations

Each chromosome defines an instance of the attribute space used by the
associated model by specifying a vector of weights [w,, w,, .., w_].

If we{0,1} we perform attribute selection, i.e., we select a crisp subset from the
universe of potential attributes.

If wel0,1] we perform attribute weighting, i.e., we define a fuzzy subset from the
universe of potential attributes

Chromosome representation:

[L/Vl Wy ... Wn][)('alabl )a (azabz )a “ees (an’bn )] [0‘]

. . . w1l =0 — X1is NOT selected & we do not care about (a1, bl) - since we do not use X1
IMagination aty w1 =1 X1 IS selected & (a1, b1) define how tolerant (high a1, low b1) or strict (low a1, high b1) we want to be when evaluating similarity along x1




Wrapper and Filter Approaches

Complete Attribute Set Complete Attribute Set
A — e |
E Individual in EA Create Predictor i i Individual in EA popu|otion i
. —» population defines F» Sorter by Prediction | > : : '
] o < e colection of best20% | | | defines ottr‘ly bute subset )
e ; Fitness Function %
Classifier | (based on attribute subset 9
(based on attribute subset) | .eq. Informoti*pn - Cardinality) <
Evaluate Classifier Evolutionary Search
Metric= Precision R i |
Fitness Function Classifier
(based on Precision) : (based on attribute subset
v obtained from besiiof last generation)
Evolutionary Search Classifier Metrics
Wrapper Approach Filter Approach
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Evolutionary Search for Designing A Fuzzy IBM
(Predictor) using a Wrapper Approach

oo mmeooes ---+  Leave-One-Out Testing
: Chromosome > XML ;Onﬁg ko Retrieval. Similarity, Local models:
Decoder P If'_l_e______l “>~Weights, GBF Parameters, @
Mutation (1) Retr \‘N
trieve Nearest _ | Similar
Probe € —
Uniform Mutation e Best | Case Neighbors Unit
Gaussian Mutation  [—m—] IZ:} - (2) E |' t
E \ Original e
Select : Similarity
- elec Maintenance
: Probe ilizati (3) Evalliate
. ‘ ) |:> —| &Utilization Local rdodels
ogome Chromgsome ( CB
- e” Eorb;bFilty tofd Remaining Object
nos eing splecte . Useful Life Similarities &
_‘b A ] Elitist_y, (RUL) Local Models
— (best from Pop i) J
Pop.l)  Fitness  Plselection) Pop.(i+1) |ns;olréclvel of (%) A i
- ggregdtion:
/ Y Model RUL Predicfion
Pop contains 100 _ Fitness Function v
1, 200 (GenMax) Assess chromosome quality by looking at performance Ly Prediction error y
of corresp. model instance prediction error | y-— j\; | < ly—9| |————o Fuzzy 1BM
R y=-y Prediction
- Syl
We want to
maximize f |
weers | EVOLUTIONARY ALGORITHM Fuzzy IBM EVALUATION

»  Chromosome: bvl W, ... wn][Sal,b1 ), (az,b2 ), ..., (an,bn )[e]

imOginOtiOﬂ at Work wl =0 — X1 is NOT selected & we do not care about (a1, bl) - since we do not use X1
wl=1—X1 IS selected & (a1, bl) define how tolerant (high a1, low b1) or strict (low a1, high b1) we want to be when evaluating similarity along x1




Evolutionary Search for Designing A Fuzzy IBM
(Classifier) using a Wrapper Approach

oo mmeooes ---+  Leave-One-Out Testing
> Ch[l'DomOjome »i XMLFﬁonf'g :»\\\ Retrieval. Similarity, Local models:
ecoder T e | “Weights, GBF Parameters, a
Mutation T :
Probe (1) Retrieve Nearest _ | Similar
Uniform Mutation Best e ObjeFts
Gaussjan Mutation  |—m—] IZ:} — - (2) Evalliat
\ Original S .\llo. ate
imilari
Select Maintenance /
[> ‘ ! |:> Probe | & Utilization
/ CB Object
Remaining Similarities &
Eliti Useful Life Local Models -
itist B Instance of i
’ (best from Pop i) el 37 FIBM g&f%?;?c i|oonn.
Pop.lil  Fitness  P(selection) RUL Engine
Rank Within Prediction-based
Percentile ? SEIeczttioqtof
est units
Fitness Function: Quantify Quality of Chromosome I—} Ground T F
Truth
drUt . Fuzzy IBM
Predicte <— ici
_ Decision
f =TP/(TP+FP) — .
F FN TN
EVOLUTIONARY ALGORITHM Fuzzy IBM EVALUATION

>

Chromosome:
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(a,.b,)lla]

[W1 W, ... Wn] [(al’bl )’ (az’bz)a vees
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To Example




Effect of Changing Parameters {a,b,c}

1 ‘ , ,
;uA (X)= 2b -5 0 5
1+ X—Ci .(C) Chaljging 'c" (d) F)hanginlg ‘a' andl b’
ai
Increqsing ¢
@imoginotionatwork Chromosome :> [Wl W2 Wn] [(abbl )? (a27b2 )7 seey (anabn )] [a]

(a) Changing 'a’'

(b) Changing 'b'

.6 | Increasifig b




5. Case Study: Prediction of Best Units for
Asset Selection

- Asset Selection for Mission Reliability: A locomotive
example

- Data Collection, Baselines, and Experiments

- Peer Learning Methodology

- Results & Conclusions




Asset Selection Outline

e Problem Description
e Data Collection and Experiments Set-Up

e Proposed Peer-Learning Methodology

e Results

e Conclusions
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Asset Selection Outline

$ -~ o Problem Description
é ; - Mission Reliability
- The Selection Problem
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The Premise

New learning approaches can address early
phases of new platform deployment with
imited operational and sensor data.

-Learning using existing utilization and maintenance
history improves our ability to select the best units for a
mission, leading to better utilization of existing assets.

-Learning from peers is a robust approach to rapid
learning from limited data.

-Evolutionary Learning provides a comprehensive
framework for automating the design and maintenance
of a classifier used for selection of the best assets.
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Asset Selection Based on Predicted Life

Months

Weeks

Days

Half Day

@ imagi

8

Collective Mind for Equipment Prognostics and Pulse Reliability

Equipment
Ventilation

Train
Control

Communication
System

Operator/
Other

Traction
System

Compressed Engine
Air Cooling &
Lube

Engine
System

. Locomotive Fleet

n

7,000 units (60% with remote monitoring
and satellite uplink) to provide time-
stamped failure codes and state info.

Alt & Aux.

Diesel Electric Locomotives:
Complex Electro-Mechanical Systems

Pulse Reliability Problem : Approach : Predict individual
Select best N units from fleet to units' time-to- failure based on
perform during an operational unit track record and peers
pulse of duration T, without failures from collective

T
T

n

n

n

n

Fleet, Units, and Collective

Fleet is a collection of points in a sparsely
populated, high dimensional feature space

Each point (unit in the fleet) has a record
in a DB, describing model, configuration,
operational and maintenance information

Each point has a collective of peers

Collective of peers are units whose
individual experience can be composed to
better predict the unit's performance

To adapt to changes in units or peers, we
will re- assess the collective over time

Fleet of Locomotives

ﬁﬂﬁﬁ
PP

Sensor Data
Utilization Data
Maintenance Logs
Repair Data

Fuzzy + EA




Metric of Success: Selection Precision

Mission

r

BEP B

Metric:
. Precision: #actual best
20 units #selected
Pick best 20% = 4 units =50% (in this case)
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Asset Selection Outline

e Data Collection and Experiments Set-Up
e Data Sources
e Experiments: Metrics and Baselines
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Data Compilation and Experiments

Data Categories:

- Configuration Information (Source: GE Rail)
- Maintenance & Repair Information
Fault Codes (Source: Locomotive's EOA)
Recommendations (Source: GE Rail)
Repairs (Source: GE Rail / Railroads)
- Utilization Information (Source: Railroads)
Locomotis with EA Service i GE Rail Locomotives Services

T Data Links A

Fault codes W Recommendations
(3 uploads/day) . . . (4-8 Rx/yr)

Railroad Yards . slels . GE Rail/Railroads Repair Shops

Utilization Information
(1 download/~ 30 days)

Repair Execution
(4-8 Repairs/yr)




Data Collection and Compilation: Tables Relationships

= Diagnostic
'lfﬂi'? Reasoner




Data Slices

m Repair

O Recommendation

22 May 2002 01 Nov 2002 01 May 2003 01 Nov 2003
| | |
1 | 1

_ﬁ- i

°
I O e O
I I

Slice 1 : . I I
< >I Slice 2 : :
< | ’I Slice 3 I
< | | > Fullfleet
< _ 5

262 units I 634 units ' 845 units . 965 units
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Asset Selection Outline

 Proposed Peer-Learning Methodology
- Definition of Peers
- Fuzzy Instance-based Classifier (FIBC)
- Evolution of FIBC Design
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Current Location of All Available Locomotives

7#e°, \Loco 5700

I:°‘.
\..o.‘/

\’.

Mission Requirements
# Locomotives needed:
Duration:

Start date:

Distance:

Average Miles/day

Grade/Elevation:
Climate, Tunnel operation:

12

9 days

+48 hrs

2,435 miles
304 m/day Max

2%
desert, hot

@ imagination at work

Loco Number:
Design and Configuration

Type:
Electrical System:

Utilization Information
Age:
Mileage:
Average miles/day:
Maintenance Information
Time elapsed since last repair:
Median time between repairs
Median time from repair to next
recommendation (Rx)

5700
AC4400

Bosch

2.9 years
247,567 mi.
299

10 days
60 days

52 days
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Identifying Loco 5700’s Peers

p1 S

: @3

s ™ =
l° 5 < \\. i P3 f2: miles/day
ot ()
& ‘8 .". / f1: Rx/Year
~Q &5 |
P6

@ Train5700 | @ Peers of Train 5700

@ = Peers of Loco 5700
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Asset Selection Outline

e Results

e Experiment 1: Top 20% Current Performers
- Robustness

o Experiment 2: Top 52 units Current Performers
o Experiment 3: Top 20% Future Performers

e Experiment 3 bis: Top 20% Future Performers
- Static vs Dynamic Models
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Baseline - Single-Heuristic based Selection

- Heuristic selection of N1 units (based on full fleet)

Objective: Create heuristic knowledge driven baseline.

count

3501
3001
2501
2007
1501
1001

50

Median time between failures

52/ 105 158 210 263 315 368 420 473 525

Ground/Truth

@ imagination at work

Ground
Truth —» T F
Pred‘cted
T TP FP
F FN TN
Predicted

Single Heuristic

% of Correctly
Classified Units
=TP/20%

% Data
Correct

Random 20% N/A
Highest Energy (MWHRS) o 0
generated 24% 9%
nghes:’ll\c;i\llli(:‘sg/ Hours 26% 97%
Highest Percentage o o
Hours Moving 29% >8%
Lowest Percentage of: o 0
Subsystem 10 Failures 38% 5%
Lowest Ratio:
Recommendations / Age 49% 100%

[Rx/yr]
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Exp 1: Peers Evolution over Time:
Estimating Best Current performers (20%)

—aA— Evolved Peers
(o)
°>-0% = Peers a7 3x be'lter
60.0% —o— Non Peer 55.6% than random
—e— Random ' 1.2 x better
8 55.0% A S A than heuristics
S 48.1%
£ 50.0% / //
(@] o,
£ 45.0% / 2l
o 46%
c 40.0% 1%
o
© 35.0%
(¢})
g 30.0% /
e 32%
25.0%
20.0% *—20% *—20% *20%
1 . 2 . 3 .
(52 out of 262 units) (127 out of 634 units) (169 out of 845 units)
Time Slices
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(Targeting top 20% of units for each Time Slice)
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Exp 2: Peers Evolution over Time:
Estimating best Current performers (52 units)

75.0% —~
A 10 x bett
Evolved Peers 63.5% honxroidggn
% - _ icti 1.7 x bett
@ 65.0% | —e— Non Peer-Heuristics 55 8% et
c —e— Random heuristics
S 55.0% - 48. 1%
£
S 45.0% -
o
c 35.0% 0/‘ ¢
S 37% 37%
S 25.0% - 32%
g %
15.0%
9.0% ‘ ‘ ‘ ‘ > 5%
1 2 3
(52 out of 262 units) (52 out of 634 units) (52 out of 845 units)
Time Slices

(Targeting Top 52 units for each Time Slice)
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Exp 3: Peers Evolution over Time:
Estimating best future performers

—A— Evolved Peers

60.0% L
—&— Non Peer - Heuristics

99.0% | —e—Random

9970

2.5 x better
than random
1.5 x better

than heuristics

@ 50.0% —@—Own (Time Series)
= o | — —Own (Median) 42%
g 45.0% A -
§ 40.0% \
o o 36%
S 30.0% -17/
8 25.0% L
((}] (o)
@ 20.0% —_ _:',""52% — 0%
15.0%
10.0%
1 2 3
(52 out of 262 units) (127 out of 634 units) (169 out of 845 units)
Time Slices

(Targeting top 20% of units for each Time Slice)
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Experiment 4: Comparing Evolved, Dynamic (updated)
Peers with Evolved Static (Non-updated) Peers:
Estimating Best Future Performers

Selection Performance

60.0% 11 —a— Ewlved Dynamic Peers

55.0% | emmm=Random /t
50.0% -

V7 1 _e— Ewlved Static Peers /
45.0% = /

40.0%

.

35.0% -
30.0% - °
25.0% -
20.0%
15.0%

The cost of

hot
x,_maintaining

the models

25%

[e)

10.0%

1 2

Time Slices

The Benefit of Automated Peer Redesign/Update
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Asset Selection Outline

e Conclusions

e Summary
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Attribute Weighing using GA [Slice 3]

(for prediction, ranking, and selection of best units)

Feature Weight a b TGBF(x; a, b, ¢)
RY_REC/YR 9.11 5.55 3.73 /b
RY_REC/100K_MILES 8.81 535 257 | 0%
RY_REC/100K_ENGINE_HRS 7.35 35.94 2.67 0.800 1 |
REC_COUNT_RY 569 8.49 3.37 | 5600 |
RY REC/100K_ENG_HRS_MOVE @ 4.08 10.06 2.75 0,400 | |
TOT_REC_COUNT 1.33 18.70 3.20 ' |
RED_REC_COUNT 0.87 0.99 3.16 | 02007 |

0.000 | e ‘ ‘ g
0 20 40 T 60 80 100 120
10.00 B Weights Slice 1 é
9.00 W Weights Slice 2
8.001 [0 Weights Slice 3
7.00 ! — if GBF >107
6.00 TGBF =11+ %—¢
5.00+ a
:'88’ 0 otherwise
2.00+
1.00+
0.00
RY_REC/YR TOT_REC_COUNT
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Conclusions

e Validating the Premise

Combining limited utilization and maintenance history improves our ability
to select the best units for a mission.

Evolved Peers provided the best overall accuracy (60.35% = over 3 times
better than random selection) for past performance. When the selection was
limited to a small fixed number of units, Evolved Peers provided an accuracy
of 63.5% (over 10 times better than random selection) for past
performance.

Evolved Peers provided the best overall accuracy (55% = 2.7 times better
than random selection and 1.5 x better than best heuristics) for future
performance

Construction of local fuzzy models does not require computing a distance in
the n-dimensional feature space

e Operational Impact:

Robustness to information loss exhibited by peer-based approach will
enable mission reliability for minimally instrumented platforms operating
with limited bandwidth

A4



6. Future Work

- Improving the Feature Space: GP for Attribute Construction
- Improving Fitness Function: Accuracy, Confidence, Info. Theory
- Improving Aggregation: Adapting Kernel Based Regressions
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Future Work

e Extend evolutionary search

e from attribute selection and weighting to attribute construction

e Improve fitness function

» to address classifier accuracy and confidence, and representation
parsimony

e Improve aggregation models

>

To References

@ imagination at work Piero P. Bonissone © All rights Reserved - CIDU 2008



Future Work

 Extend evolutionary search from attribute selection and
weighting to attribute construction.

Use Genetic Programming to automate attribute construction and evolve
attribute space with functional compositions of primitive attributes

GA: [w,wyeowplla,B),....(ap.0,)la] =
s N

4 N
GP: [ g % Wy )y * 8 . Ml (w1, ooy @) ... (., )
- )

hd

A sentence derived from a grammar ‘
that defines a syntactically correct

functional composition of attributes / \
to replace a primitive attribute 7S N\

For example:

By | (G (5w ) Wy (5 2)
W2
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Future Work: Improving the Fitness Function

e Improve fitness function to address classifier accuracy and
confidence, and representation parsimony

classifier accuracy, confidence and representation parsimony

a,

TotPred — CorrPred
fl=¢ K
TotPred

A v
ZTotPred nmmi D
= K. ‘(Zj:le)_l‘

L+ a, =
TotPred (D-1) ‘

=q, [Classifier_ Inaccuracy]+ a, [Average(Retrieval_Inaccuracy)]+ a,

D-1

i

Predicted-» T F
Ground
Truth’
T TP FP
F FN TN

Assumptions:
Two-class problem or

Multiple class problem with
indistinguishable errors

Where:

TotPred = (TP+FP+FN+TN)

Typical values: Q=

Classifier_Inaccuracy = (FN+FP)/(TP+FP+FN+TN)

nmin, = number of minority decisions in it retrieval

K.= number of points retrieved for case | (Cardinality of it" retrieval)

2, a,=0.2; a,=0.1

Retrieval_Inaccuracy (i)= (nmin, )/ K. = Cardinality of Non-Mode/TotalCardinality for ith retrieval
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Future Work

e Improve aggregation models

We could use the similarity measures as kernel functions for each dimension |
and create kernel-based regressions

We would use local search methods to obtain the parameters of the kernel-
based regression, within each trial of the EA'’s.
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Future Work: Improving Aggregation

Oth Order Approximation (weighted
average)

- It works well when interpolating

y A
Y2 @)

2

A ziil wi X yi

Y, ®=—YV, = > —e

DI
Vi O -

P
W,
wz 7777777777 K_r

oth

Order Approximation (weighted
average)

It is lousy when extrapolating

Bounded by the minimum & maximum
of its arguments

y A
Ve |
y
’ 5 Zl‘: Wi Xy M
‘_ yq = Zz
i=1 Wi
Vi O .
W,
,,,,,,,,,,, W,
/—/
X; Xy X, x
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Future Work: Improving Aggregation

Oth Order Approximation (weighted

1st Order Approximation (Weighted
average)

Linear Regression)
- It is lousy when extrapolating i Weight each data point by its

similarity degree with the probe Q
- Bounded by the minimum & maximum

of its arguments

y A y A
y y s _ v (7T7Y 5T
7 | * . Yy, =X,\Z2°Z) 2V

Y2 5 O Y2

‘_ s ZiZl wi X yi —)

yq 2
i:lwi
Vi Q _ Vi /, -
WZ w2
I e Wy I e Wy
X; X, X, ¥ X; X, X, ¥
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Improved F-IBM: Algebraic Interpretation

@)

[Parameters of TGBF; ] W

[Weights for Attribute Space]

Weighted Sin%nilarity Sj i ! Sj S
n J
TGBF, (xi’j;ai,bi,xi’o) 7 ﬂ'—l [max(l—wl.),Sj,i] > k S
7 Y . .
_ Feature i Similarity Weighted Similarity =
X for peer u; for peer u; § Normalized
7 |Similarity
Retri¢val Local Models lX ;  |for peer u,
| it'l“io O(M ) J Rl (0 (ul)): th(l),l = yl W :{O if i+ ]
0 1 axD,,,+(1-a)D,,_,, > Vs =]
Rz(O(uz)): sz(z),z = Y2 Z =0t el V=TT ~
® U, O 0(1/12) > . > > yQ
axD,,,+0-a)D,,, ,
= —1
o $.=X,(z"z) "' z"v
ukO O(I/tk) . R, (O(Mk))_ Dt(k),k; i
, A axD, ., . +(1-—a)D,, ., Vi
g _ 1 Aggregation
f X,
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04 [Constant for Exponential Average of History]




Further Resources
From my Web site: www.rpi.edu/~bonisp

Go to: http://www.rpi.edu/~bonisp/publications-new.htm|

Relevant papers that you can download:

"Hybrid Soft Computing Systems: Industrial and Commercial Applications®, P. P. Bonissone, Y-T Chen, K. Goebel and P. S. Khedkar, Proceedings of
the IEEE, pp 1641--1667, vol. 87, no. 9, Sept. 1999. http://www.rpi.edu/~bonisp/NASA-course/hybridSC99.pdf

"When will it break? A Hybrid Soft Computing Model to Predict Time-to-break Margins in Paper Machines”, P. Bonissone and K. Goebel, Proc. SPIE
2002 , pp. 53--64, Aug. 2002, Seattle, WA http://www.rpi.edu/~bonisp/NASA-course/webbreakage.pdf

"Evolutionary Optimization of Fuzzy Decision Systems for Automated Insurance Underwriting”, P. Bonissone, R. Subbu, and K. Aggour, Proc. FUZZ-
IEEE 2002, pp. 1003 - 1008, May 2002, Honolulu, HI.  http://www.rpi.edu/~bonisp/NASA-course/wcci2002.pdf

“Automating the Quality Assurance of an On-line Knowledge-Based Classifier By Fusing Multiple Off-line Classifiers”, P. Bonissone, Inform. Proc. &
Management of Uncertainty (IPMU), Perugia, Italy, July 2004 http://www.rpi.edu/~bonisp/NASA-course/IPMUv8.pdf

"Development and Maintenance of Fuzzy Models in Financial Applications”, P. Bonissone, Proc. SMPS 2004, , Oviedo, Spain, September 2004.
http://www.rpi.edu/~bonisp/NASA-course/Oviedo2004.pdf

"Six Sigma Quality Applied Throughout the Lifecycle of and Automated Decision System", A. Patterson, P. Bonissone, andM. Pavese, Journal of
Quality and Reliability International, 21:275-292, 2005  http://www.rpi.edu/~bonisp/NASA-course/SixSigma.pdf

"An Evolutionary Process for Designing and Maintaining a Fuzzy Instance-based Model (FIM)", P. Bonissone, A. Varma, K. Aggour, 1st Workshop
Genetic Fuzzy Systems (GFS 2005), Granada, Spain, March 2005. http://www.rpi.edu/~bonisp/NASA-course/piero-gfsmod.pdf

Predicting the Best Units within a Fleet: Prognostic Capabilities Enabled by Peer Learning, Fuzzy Similarity, and Evolutionary Design Process", P.
Bonissone, A. Varma,. FUZZ-IEEE 2005, pp 312-318, Reno NV, May 22-25, 2005.

http://www.rpi.edu/~bonisp/NASA-course/fuzz05anilfinalv27.pdf
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Questions 7




Thank You!




